A Parallel Implementation of an Asynchronous Team to the Point-to-Point Connection Problem

Ricardo C. Corrêa *,1 Fernando C. Gomes *,1 Carlos A.S. Oliveira ** Panos M. Pardalos **

Abstract

We propose a parallel and asynchronous approach to give near-optimal solutions to the non-fixed point-to-point connection problem. This problem is NP-hard and has practical applications in multicast routing. The technique adopted to solve the problem is an organization of heuristics that communicate with each other by means of a virtually shared memory. This technique is called A-Teams (for Asynchronous Teams). The virtual shared memory is implemented in a physically distributed memory system. Computational results comparing our approach with a branch-and-cut algorithm are presented.

Key words: Point-to-point connection problem, multicast routing, parallel algorithms, asynchronous models, heuristics

1 Introduction

Multicast routing is the sending of information from a number of sources for multiple receivers in a network, with a simple “transmit” operation [1]. Nowadays, multicast routing is required in many situations, including video-on-demand, video-conference, radio stations on Internet, and delivery of soft-

* Departamento de Ciência da Computação, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil.
**Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA.
Email addresses: correa@lia.ufc.br (Ricardo C. Corrêa), carvalho@lia.ufc.br (Fernando C. Gomes), oliveira@ufl.edu (Carlos A.S. Oliveira), pardalos@ufl.edu (Panos M. Pardalos).
1 Supported in part by the CNPQ (Brazilian Research Council).
ware. In such situations, three types of nodes can be distinguished in a network, namely source nodes, from which originates the data; destination nodes, which receive the data; and link nodes. All source, destination and link nodes can be used to route information from sources to destinations. Thus, depending on the structure of the network, there is a large number of possibilities to route information from source to destination nodes. Consequently, optimization problems may be formulated in relation to these many possible routings.

In this paper, we concentrate our attention in one of such problems, the point-to-point connection (PPC) problem. We present a parallel asynchronous methodology to solve it, called Asynchronous Teams (A-Teams). We also demonstrate an implementation of this methodology and give computational results of our algorithm. This paper is organized as follows. In Section 2 we give a description of the point-to-point connection problem. We also discuss some of the complexity results for the PPC problem and its variants. In Section 3 the Asynchronous Teams method is discussed in detail. We present our polynomial complexity algorithm to the PPC problem in Section 4. In Section 5 a parallel implementation of the Asynchronous Teams is discussed. In Section 6, computational results found using the algorithm are presented and analyzed. Finally, in Section 7 we present conclusions and remarks on future research.

2 The Point-to-Point Connection Problem

In this section we define the Point-to-point Connection (PPC) problem. This problem occurs as a kind of multicast routing problem, as well as in other areas, like VLSI and vehicle routing [2]. From the optimization point of view, we need to characterize the solutions and an objective function. Let $G(V, E)$ be a graph where V represents the set of devices connected in a network and E represents the physical links (cables, satellite connections) between these devices. We assign a cost $w(i, j)$ to each link (i, j) in the network. This quantity can represent real costs of using the link. It can also model the time required for delivering a message through the link. We assume that costs of network links are fixed (a situation corresponding to static routing). In addition, we assume that every link has the necessary throughput to convey the desired data.

Moreover, we assume that the number of source and destination nodes are identical. Situations in which the number of sources is less than that of receivers can be easily handled if we include dummy source nodes into the network.

A solution is characterized by a forest $E' \subset E$, composed of a set of paths
Fig. 1. Instance of the PPC. The thick lines represent the best solution, with value 44.

joining the source to the destination nodes (see Figure 1). The cost of a solution is the sum of the costs of all links involved in this solution. Then, we want to find a way to link the source and destination nodes with minimum total cost.

In mathematical terms, let \(|V| = n\) and \(|E| = m\). For a given positive integer \(p\), define \(S \subset V\) and \(D \subset V\) to be the set of source and destination nodes, respectively, where \(|S| = |D| = p\) and \(S \cap D = \emptyset\). A source-destination coupling (or coupling, for short) is a one-to-one mapping from \(S\) to \(D\). Then a point-to-point connection, referred to simply as connection, is a subset \(E'\) of \(E\) such that there is a coupling in which each source-destination pair is connected by a path containing only edges in \(E'\). Notice that these paths may intersect. Denote the cost of \(E'\) by \(f(E') = \sum_{(u, v) \in E'} w(u, v)\). The objective in the undirected and non-fixed point-to-point connection problem (PPCP) is to find a minimum cost point-to-point connection.

We can devise four different variants of the PPC problem. Besides the undirected, non-fixed version defined above, we can make \(G\) directed or fix destinations. In the latter case, a fixed coupling is given as input. Li et al. \([2]\) have proved that all four versions of the problem are NP-hard. In the same work, the authors gave a dynamic programming algorithm with time complexity \(O(n^5)\) for the fixed destinations case of the problem on directed graphs when \(p = 2\). More recently, Natu and Fang \([3]\) proposed another dynamic programming algorithm, still for \(p = 2\), with overall time complexity \(O(mn + n^2 \log n)\). They also presented an algorithm for the fixed destinations case when the graph is directed and \(p = 3\). This algorithm has time complexity \(O(n^{11})\). Goemans and Williamson \([4]\) present an approximation algorithm for the PPC problem, that runs in \(O(n^2 \log n)\) and gives its results within a factor of \(2 - 1/p\) of an optimal solution. In the case in which \(p = 1\), it is easy to see that the problem is equivalent to the shortest path problem.
2.1 Mathematical programming formulation

To derive a mathematical programming model of the PPCP, let us define the following variables:

\[x_{i,j} = \begin{cases}
1 & \text{if } (i, j) \in E' \\
0 & \text{otherwise}
\end{cases} \]

The PPCP can be stated as:

\[
\min \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i,j}w_{i,j}
\]

such that

\[
\sum_{i \in A, j \notin A} x_{i,j} \geq 1 \quad \forall A \subset V(G), \quad \text{whenever } |A \cap S| \neq |A \cap D| \\
x_{i,j} \in \{0, 1\} \text{ for all } i, j = 1, \ldots, n
\]

where \(S, D \) are respectively the source and destination sets discussed above. Although there exist polynomial time dynamic programming algorithms for solving point-to-point connection instances, they only apply when the number of source-destination pairs is no greater than 3. In real-world applications we need to solve far larger problem instances, with many source-destination pairs. In this paper, we are concerned with providing a near-optimal solution to instances of the undirected, non-fixed PPC problem in an acceptable amount of computation time. We design some simple heuristics that cooperate to produce good solutions. These heuristics are organized as an Asynchronous Team (A-Team), as shown in the next section.

3 A-Team algorithms

An Asynchronous Team (A-Team) is an organization of heuristics that communicate with each other exchanging solutions through a shared memory. Each heuristic can make its own choices about inputs, scheduling and resource allocation. This method was proposed by Souza [5] and has been applied successfully to the Traveling Salesman Problem [5], Set Covering Problem [6], Job Shop Scheduling Problem [7,8] and Constraint Satisfaction Problem [9].
The simple ideas around the A-Teams method make it suitable to be used to solve combinatorial optimization problems. This characteristic becomes more interesting when there are only few heuristics for a problem. In this case, heuristics can be easily combined in an A-Team to give improved results. Even for problems for which there are good known heuristics, this method can be used to combine the strengths of different strategies. This section is devoted to the definition of A-Team algorithms. The next section contains details about its implementation for solving the PPC problem.

An A-Team can be defined as a set $M = \{M_1, M_2, \ldots, M_l\}$ of shared memories and a set $H = \{H_1, H_2, \ldots, H_k\}$ of heuristics. Each memory M_i holds a set of potential solutions $S_i = \{s_1, s_2, \ldots, s_k\}$. Each heuristic H_j has access (reading, writing, or read-writing) to a subset $M_l, l \in R(j)$ of the memories, where $R(j) \subset \{1, \ldots, k\}$ is the reach of heuristic H_j. The heuristics H work as asynchronous strategies, capable of reading and writing new solutions to and from its associated memories. The general idea is that the memory holds a population of solutions, which is modified by heuristics. Each heuristic can be very simple, but must contribute different features to the generated solutions. The content of memories can therefore evolve in the sense that the objective function of the best solution is improving.

Among the set H of heuristics we can identify some with specific attributes. For example, construction heuristics work (alone or together with other heuristics) to create a new solution. They are used mainly to fill the memories at the beginning of processing. Improvement heuristics are used to modify existing solutions. An improvement heuristic reads a solution from any of the memories to which it has access, executes an improvement procedure and then writes the resulting solution again to one of the accessible memories. Destruction heuristics act every time that it is necessary to discard a solution from memory. This happens whenever a new solution must be written in an already full memory. The flow of execution of an A-Team is therefore inherently parallel. A generically equivalent sequential version is presented in Algorithm 3.

In Figure 2 a simple A-Team is presented, where arrows represent heuristics and the rectangle represents the only shared memory $M = M_1$. One of the heuristics is marked as a constructor, which is represented differently from other heuristics. The destructor also has its own representation. In this case, the memory M_1 is shared by all heuristics in H. In any A-Team, the operations that the heuristics are allowed to perform on M are two, namely reading and writing. The reading operation does not take any input, and returns a solution stored in M, selected with some arbitrary criterion. The input of the writing operation is a solution, which is possibly written in M according also to an arbitrary criterion. If a solution is to be written, then another solution in M is selected to be deleted and replaced by the new solution.
for each of the memories $M_i \in M$ do
for $j \leftarrow 1$ to k_i do
 Call one of the constructors to create solution s_j
 write(s_j, M_i)
end for
end for

while termination_condition \neq True do
 $H_i \leftarrow$ random(H)
 $l \leftarrow$ random($R(i)$)
 $s_j \leftarrow$ read_solution(M_i)
 $s_k \leftarrow H_i(s_j)$
 {Call a destructor to remove a solution from M_i}
 destructor(M_i)
 {Write the resulting solution}
 write(s_k, M_i)
 {Update best solution}
 if $f(s_k) < f(best\-solution)$ then
 best-solution $\leftarrow s_k$
 end if
end while

Fig. 2. Example of an A-Team. Arrows represent heuristics and the rectangle represents shared memory.

We characterize A-Team algorithms predominantly by the following three features. First, the heuristics are autonomous, which means that each of them is able to run independently from the others. Second, the shared memory runs asynchronous communications, which allows concurrent reading and writing operations from distinct heuristics without any synchronization among them. Finally, heuristics retrieve, modify, and store information continuously in the shared memory until a certain termination condition is achieved.

An execution of an A-Team can be described by a set of events. Each event is a 5-tuple composed by the following elements: the time at which the event occurs; the input data, if any; the state of the shared memory prior to the occurrence of the event; the state of the shared memory after the occurrence of the event; and the output data, if any. According to this formalism, there is
a restricted number of types of events occurring during an A-Team execution:

- The initialization of global variables and the shared memory. This type of event occurs just once at the beginning, and takes no input. The state prior to the event is undefined, the state after the event contains the initial state of the global variables and the shared memory. No output is generated.
- The reading operation. Again, this type of event takes no input. The state does not change, and the output is a solution in M.
- The execution of a heuristic H_i. It takes one solution in $M_j, j \in R(i)$ as input and possibly changes the state of the global variables. The output of this type of event is also a solution.
- The writing operation. A solution is taken as input to be written in M. This may change the state of the solutions memory, but no output is generated.

Finally, the termination of the A-Team is decided by the algorithm termination-condition, as shown in Algorithm 3.

It is clear from the previous observations that there exist several distinct executions for a given A-Team. The solution obtained in each execution may differ. An execution is said to be acceptable if it leads to a near-optimal solution. Again, an acceptable execution of an A-Team is not unique. Thus, an acceptable execution is efficient if it is performed fast. Finally, an A-Team algorithm is considered efficient if it has efficient executions and these occur with high probability. In the next sections, we show in details a parallel A-Team algorithm for the PPC problem, and we check its efficiency experimentally.

4 Solving the PPC problem

In this section we describe the variables and heuristics of our A-Team for the PPC problem. The heuristics are divided in classes. We use construction heuristics (C^*) that build a feasible solution from another feasible solution, improvement heuristics (I^*) that try to improve a given feasible solution, and consensus based heuristics (CB^*) that take sets of edges from two solutions of memory and construct a partial (unfeasible) solution based on them. Finally, in order to avoid memory overload, after each construction, improvement or consensus based heuristic run, a destruction heuristic (D) is used to remove a solution from M.

7
4.1 Global data structures

Some global variables are used for all heuristics. The matrix A stores the length of a shortest path between all pairs of nodes in G. The element $A_{u,v}$ indicates the length of a shortest path between u and v in G, for all $u, v \in V(G)$. A shortest path is stored in the matrix $\Pi = (\Pi_{u,v})$. The element $\Pi_{u,v}$ is the predecessor of v in some shortest path between u and v in G, for all $u, v \in V(G)$. The initial values of variables $A_{u,v}$ and $\Pi_{u,v}$ are calculated with the Floyd-Warshall’s shortest paths algorithm in time $O(n^3)$ [10]. The variable $\text{best} _\text{sol}$ stores the solution found so far with smallest cost. The objective function of the solution with greatest cost is stored in $\text{worst} _\text{sol}$.

The shared memories M_i, $1 \leq i \leq m$ consist of finite linear lists of k_i solutions. The read operation does not take any input, and returns the solution stored in a position of M chosen at random. Initially, M is filled with connections obtained with the construction heuristic C1, described below. On the other hand, the input of the write operation is a solution s. The algorithm write initially tests if $f(s) < f(\text{worst} _\text{connection})$ and $s \neq s', \forall s' \in S$. If this is false, s is discarded and the writing operation is aborted. Otherwise, the “roulette wheel” method is used to randomly select a position p_i, $1 \leq p_i \leq k_i$, according to the value of the objective function for the solutions in M_i. Then, the solution s is assigned to $M_i[k]$.

4.2 Heuristic strategies

In what follows, we describe simple heuristics used to solve the PPC problem. These heuristics form the H set of agents operating on the shared memories. In the following description we denote by $u \sim v$ a path from vertex u to vertex v.

Construction Heuristic C1 This heuristic creates a completely random solution.

1. $D \leftarrow$ set of destinations; $S \leftarrow$ set of sources
2. $sol \leftarrow \emptyset$
3. $i \leftarrow 1$
4. while $D \neq \emptyset$ do
5. $d \leftarrow$ random destination in D
6. $D \leftarrow D \setminus d$
7. $path \leftarrow$ random path in G from S_i to d
8. $sol \leftarrow sol \cup path$
9. $i \leftarrow i + 1$
10. end while
11: return \(sol \)

Time complexity: \(O(pm) \)

Construction Heuristic C2 This heuristic takes a set \(E' \) of edges from the incomplete solution created by \(\text{CB1} \) or \(\text{CB2} \) (see below), and creates a complete solution as follows:

1: \(sol \leftarrow \emptyset \)
2: for each edge \((u,v) \in E' \) do
3: Get a random source-destination pair \((a,b) \).
4: \(p_1 \leftarrow \text{shortest-path}(a,u) \); \(p_2 \leftarrow \text{shortest-path}(v,b) \)
5: \(p \leftarrow (p_1,p_2) \)
6: \(sol \leftarrow sol \cup p \)
7: end for
8: if \(|E'| < p \) then
8: connect remaining source-destination pairs using \(\text{C1} \).
9: end if

Time complexity: \(O(m) \)

Construction Heuristic C3 This heuristic constructs a solution \(s \) in the same way as \(\text{C1} \). The difference is that it guarantees that the final solution has no sources or destinations inside each path \((a,b) \in s \). This makes the paths in \(s \) completely disjoint. Time complexity for \(\text{C3} \) is also \(O(pm) \).

Consensus Based CB1 Takes the common edges of two solutions and inserts them in an auxiliary memory. This algorithm works together with heuristic \(\text{C2} \) to form a new feasible solution.

1: Select solutions \(s_1 \) and \(s_2 \) from memory \(M \).
2: \(E \leftarrow \text{edges in } s_1 \cup s_2 \)
3: store \(E \) in an auxiliary memory.

Time complexity: \(O(m \log m) \)

Consensus Based CB2 Compares two solutions \(s_1 \) and \(s_2 \) and stores the edges appearing only in the best of \(s_1, s_2 \).

1: Select solutions \(s_1 \) and \(s_2 \) from memory \(M \).
2: if \(f(s_1) \geq f(s_2) \) then
3: \(s'_1 \leftarrow s_1; s'_2 \leftarrow s_2 \)
4: else
5: \(s'_1 \leftarrow s_2; s'_2 \leftarrow s_1 \)
6: end if
7: Let \(E \leftarrow \text{edges of } s'_1 \setminus s'_2 \)
8: store \(E \) in an auxiliary memory.

Time complexity: \(O(m \log m) \)

Improvement heuristic I1 This heuristic uses the edge with lowest weight to concatenate shortest paths in a solution.

1: Select a solution \(s \) from memory \(M \).
2: \(p \leftarrow a \leadsto b \), for \((a,b) \in s \).
3: Let \(e \leftarrow (u,v) \) such that \((u,v) \in p \) and \((u,v) \) has minimum weight
\[w(u, v). \]
4: \(p_a \leftarrow \text{shortest-path}(a, u); \) \(p_b \leftarrow \text{shortest-path}(v, b) \)
5: \(p' \leftarrow (p_a, u, v, p_b) \)
6: \(s' \leftarrow (s \setminus p) \cup p' \)
7: return \(s' \)

Time complexity: \(O(m) \)

Improvement heuristic I2 Replaces the weightiest edge from a path in a solution using a shortest-path.

1: Select a solution \(s \) from memory \(M \).
2: \(p \leftarrow a \sim b \), for \((a, b) \in s \).
3: Let \(e \leftarrow (u, v) \) such that \((u, v) \in p \) and \((u, v) \) has maximum weight \(w(u, v) \).
4: \(p_a \leftarrow \text{shortest-path}(u, v); \)
5: \(p' \leftarrow (a \sim u, p_a, v \sim b) \)
6: \(s' \leftarrow (s \setminus p) \cup p' \)
7: return \(s' \)

Time complexity: \(O(m) \)

Improvement heuristic I3 Heuristic based on the “triangle inequality” property.

1: Select a solution \(s \) from memory \(M \).
2: Let \(p \leftarrow a \sim b \) be the path in \(s \) between \(a \) and \(b \), for \((a, b) \in S \times D \).
3: for each subpath \(x, y, z \) in \(p \) do
4: \(\text{if } \exists (x, z) \in E(G) \text{ such that } w(x, z) < w(x, y) + w(y, z) \text{ then} \)
5: \(p \leftarrow a \sim x, (x, z), z \sim b \)
6: \(\text{end if} \)
7: \(\text{end for} \)
8: return \(s' \)

Time complexity: \(O(pm) \)

Improvement heuristic I4 Creates a new solution from an existing solution, using only shortest paths.

1: Select a solution \(s \) from memory \(M1 \).
2: for each source-destination pair \((a, b) \in s \) do
3: \(p \leftarrow \text{shortest-path}(a, b) \)
4: Replace \(a \sim b \) by \(p \) in \(s \).
5: \(\text{end for} \)
6: return \(s \)

Time complexity: \(O(pm) \)

Destructor D Chooses a solution from shared memory, using a probability distribution criterion:

\begin{verbatim}
parameter Memory \(M_i \)
\(s \leftarrow \text{roullet_weel}(M_i) \)
delete(s)
\end{verbatim}

Time complexity: \(O(|M_i|) = O(k_i) \)
5 A partially synchronous distributed model

The A-Teams approach has a remarkable intrinsic parallelism: the application of various heuristics to the same state of the shared memory can be performed concurrently.

In implementing a parallel A-Team strategy, a problem that is faced is that the timing of heuristics is different. This can result in one heuristic being executed many times, while other heuristics have less opportunity to work in the parallel memory due to a greater complexity. This can lead to a situation where, although there is a team of heuristics, only one of them is contributing to the final solution. In the other hand, one can not synchronize the heuristics because this will make all heuristics depend on the slowest of them.

To avoid the timing problem, we use a partially synchronous model to implement the A-Team [11]. In such a model, one can fix a maximum level of asynchrony between tasks in different processors. These tasks are coordinated by an external synchronizer. In this section we define the formal characteristics of this model and describe the partial synchronous implementation of the A-Team.

5.1 The partially synchronous model

We consider a distributed memory system composed by a set of p processors, $p > 1$, each one with its own memory. Like in a computer network, there is no shared global memory, and the processors interact only by message passing through (bi-directional) communication links. This parallel system is represented by an undirected connected graph $H_{ps} = (Q, E(H_{ps}))$, where Q represents the set of processors and $E(H_{ps})$, the communication links. For the remainder of the paper, members of Q are referred to as nodes, whereas the members of $E(H_{ps})$ are called edges. Every node $q_i \in Q$ is able to communicate directly only with its neighbors in H_{ps}. The set of neighbors of q_i is denoted by $N(i)$.

The timing characteristics of the partially synchronous model are related to the following properties:

1. Each node $q_i \in Q$ is driven by a local clock, which generates pulses s_i of duration $\tau_i(s_i) \geq 0$. During a pulse s_i, the node q_i can receive a set $MSG_i(s_i)$ of messages from nodes in $N(i)$ (this set is empty if $\tau_i(s_i) = 0$), do some computation locally, and send a set of messages (possibly empty, and certainly empty if $\tau_i(s_i) = 0$) to some nodes in $N(i)$. The computation performed by q_i during s_i changes the state of the local memory of q_i from...
\[\sigma_i(s_i) \text{ to } \sigma_i(s_i + 1). \] The duration of a pulse is independent on the duration of other pulses, and can be arbitrarily large.

(2) Let \(msg \) be a message sent by \(q_i \) in pulse \(s_i \) to a node \(q_j \in N(i) \). If \(s_j \) is the pulse in \(q_j \) in which \(msg \) is received (i.e. \(msg \in MSG_j(s_j) \)), then \(s_j > s_i \) and \(s_j \leq s_i + \delta_{ij} \), for some given constant \(\delta_{ij} \geq 1 \). Thus, the message delay of any communication is unpredictable, but bounded, no matter how long the duration of the pulses of the nodes involved in this communication are. Define \(\Delta_i = \max_{q_j \in N(i)} \delta_{ij} \), for all \(q_i \in Q \).

5.2 Distributed memory executions

The intrinsic parallelism in an A-Team is better characterized if we consider a parallel model with solutions shared across processors. In such a model, heuristics can execute concurrently and physically share the solutions in its local memory, making requests for solutions in other nodes of the system. In this case, the parallel reading operation returns a solution located at a specified position in \(M \), and such position is selected at random. Still, the parallel writing operation takes a solution as input and must select an entry in \(M \) in order to store this solution. The entry is selected using a generalized “roulette wheel” principle.

In our implementation, the memory \(M \) is evenly distributed over \(q \) processors, with \(M_i \) being the portion of the solutions memory assigned to processor \(q_i \). Each heuristic \(H_i \in H \) can run in any of the processors and access any of the other \(M_j \in M_{h_i} \) memories for reading or writing. The operation \texttt{read} and \texttt{write} must now take in considerations distributed considerations.

Let \(q_i \in Q \) be a processor which requests a distributed writing of a solution \(s \). The first step is the choice of the specific memory \(M_i \) that will be written to. This can be made based on many characteristics of memories, or even randomly. The method used considers the diversification of each memory, where the diversification of a memory \(M_i \) is given by the value of the worst solution minus the value of the best solution in this processor. The choice is made for the memory with least diversification. Our aim is to contribute different solutions such that memories can share potential improvements.

To reduce communication costs, all reading and most of the writing operations are made in the local memory. This decision implies that writing solutions in remote processes is the only communication method between distinct memories. Therefore, we define for each process a parameter \(\alpha_w \), the percentage of solutions that will be written to other (non local) memories.

Every node \(q_j \in N(q_i) \) must process requests for writing solutions in its local memory. It must select a position in its local memory independently, and this
is done in the same way as in the sequential writing.

5.3 Types of messages

The distributed operations on M involve some message exchange between processes in Q. These messages can be classified as initialization messages, writing messages, and control messages. For the purpose of synchronization, all messages include the pulse σ_i in which the distributed operation was requested to M_j by some heuristic H_i.

5.3.1 Initialization messages

The initialization messages are responsible for proper set up of variables. In the parallel A-Team, the initialization phase is started by a driver process which sends a startup message to all child processes. The local variables are then initialized. An important sub-step in many of the proposed heuristics is the computation of the shortest path between two nodes. This is a time consuming task, and therefore all shortest paths are computed at the beginning of the A-Teams execution and stored in the matrices Π and A as explained in Section 4.1. To reduce the burden of calculating these values, the all-pairs of shortest paths algorithm is distributed over all processors. The distributed algorithm uses a torus model for diffusion of the computed values [12]. According to this model, values must be computed in two phases (corresponding to the two dimensions of the torus). The values in the first phase are sent using the `send_paths1` message. Then, the second phase of the algorithm proceeds and the result is sent using the `send_paths2` message. After this, the A-Team is initialized and start the processing of messages.

5.3.2 Messages for writing solutions

The second type of messages is used when a process needs to write a solution. As explained, the first step consists in asking the neighbor nodes for a diversification parameter. Based on this parameter the exact memory is chosen. The process then sends a message `ask_parameter` for each node in its neighborhood. Every time this message is received, the diversification parameter is computed and sent together with the `resp_parameter` message. Then, after processing `resp_parameter` from all neighbor nodes, a node can send the solution to the chosen node using the `receive_sol` message. The destination node receives the solution and inserts it in its local memory. Finally, after receiving all data the node sends the message `end_write` to the requesting node. This message acknowledges the correct reception of the solution.
5.3.3 Control messages

The third kind of messages, control messages, are used to define the execution cycle of each process. There are two messages in this group: work done and terminate. To understand the necessity of these messages, suppose that the terminate condition is true and the algorithm must terminate. How can all processors agree in stopping their operations? More importantly, how can a node be sure that no other node is depending on it for processing messages and therefore it can stop safely? For this kind of coordination, the network must specify a life cycle control protocol.

The simple method employed in our implementation uses one of the nodes (the first one) as the arbitrator for execution termination. When the terminate condition is evaluated as true by the arbitrator (for example, the optimum solution was found), it must send the message terminate to all other nodes. In response, the node send the same message as an acknowledgment. Each node that receives the terminate message must stop generating messages and only answer to requests previously sent to it. When the arbitrator receives an acknowledgment from all nodes it can safely send the terminate message. Finally, in response to the terminate message the process can shut down and exit. The processing of messages is summarized in Algorithm 5.3.3. The Algorithm 5.3.3 shows the actions performed in each processor q_i during a pulse s_i.

5.4 Local Variables

Some local variables are used to handle the distributed operations on M. For example, the communication delays in the partially synchronous model allow a process q_i to have a number of pending distributed writings in a pulse. Then, a circular buffer $pending_write_i$ is used to store, in processor q_i, the solutions associated to a pending writing requested by q_i. The size of this buffer must be equal to δ_i, because this is the maximum difference in pulses between q_i and any other process in the system. The extremes of the circular buffer are indicated by $first_pending_i$, which is the oldest solution in the circular buffer, and $last_pending_i$, which is the most recent solution in the circular buffer.

5.5 Simulating the partially synchronous model

In this section, we deal with the problem of implementing the partially synchronous algorithm described in the previous section in an asynchronous model of distributed computation. The asynchrony in this model stems from the fact that all messages are delivered within some finite but unpredictable delay. In
1: **Input:** message msg from node j
2: **switch** msg
3: {Initialization messages}
4: **case** startup:
5: Compute shortest paths among nodes
 from $(i-1)(m/|Q|)$ to $i(m/|Q|) - 1$.
6: $j \leftarrow i + m/|Q|$
7: Send message **send_paths1** to node q_j
8: **case** send_paths1:
9: $P \leftarrow$ path received with the message
10: copy information in P to Π and A.
11: send P to node q_{i+1}
12: **case** send_paths2:
13: $P \leftarrow$ path received with the message
14: copy information in P to Π and A.
15: {Messages for writing solutions}
16: **case** ask_parameter:
17: $p \leftarrow f(\text{best_sol}) - f(\text{worst_sol})$
18: send message(\text{resp_parameter}) with parameter p
19: **case** resp_parameter:
20: $\text{resp}_j \leftarrow p$, where p is the parameter received
21: if $\text{resp}_k \neq \emptyset$ for all $k \neq i, k \in \{1, \ldots, |M|\}$ then
22: $\text{pos} \leftarrow k$ such that resp_k is minimum
23: $\text{sol} \leftarrow \text{random}(\text{pending_sol})$
24: $\text{pending_sol} \leftarrow \text{pending_sol} \setminus \text{sol}$
25: Send message **receive_sol** to node pos, with parameter sol.
26: **end if**
27: **case** receive_sol:
28: $\text{sol} \leftarrow$ solution encoded in the message
29: call write(sol, M_i)
30: send message **end_write** to node j
31: **case** end_write:
32: $\text{pending_write} \leftarrow \text{pending_write} - 1$
33: {Control messages}
34: **case** work_done:
35: $\text{stop_processing} \leftarrow \text{true}$
36: **case** terminate:
37: $\text{terminate_condition} \leftarrow \text{true}$
38: end case
1: receive startup message from synchronizer
2: while terminate_condition ≠ true do
3: receive safe(s, MSG(s))
4: Do message processing (Algorithm 5.3.3)
5: if stop_processing ≠ false then
6: \(h \leftarrow \text{random}(H) \)
7: \(\text{sol} \leftarrow h(M_i) \)
8: \(l \leftarrow \text{random}(|M|) \)
9: if \(l = 1 \) then
10: write(sol, \(M_i \))
11: else
12: Send message \text{ask parameter} for all nodes \(j \)
such that \(j \in \{1, \ldots, |M|\} \) and \(j \neq i \)
13: pending_sol \leftarrow \text{pending}_\text{sol} \cup \text{sol}
14: end if
15: end if
16: send(acknowledge)
17: end while

In our case, the Parallel Virtual Machine (PVM) running in a local network is the underlying parallel system, therefore delays can turn out to be a major bottleneck. The program must solve two main issues, namely keep the synchronization delay within the specified limits (\(\delta_i \)) and implement a fair distribution of processing across nodes in the system.

A simple way to solve this problem is to have, for each processing node of the A-Team, an auxiliary process which takes control of the communication requirements. Figure 3 represents graphically this architecture. Each node is now composed of two sub-tasks: the A-Team and a synchronizer module. All communication from and to the A-Team task is handled by the synchronizer. In the other hand, messages can be sent directly among synchronizers running in different nodes. This ensures that the messages are exchanged within the specified delays.

Fig. 3. Organization of processes in the nodes of the parallel machine.

In this architecture, only a specified number of messages can be exchanged
between the A-Team and its synchronizer. The following types of messages are used:

- **startup**: this message signals the start of the computation. In response to this message all initialization tasks are executed. The most important of these tasks is the distributed computation of the matrices $A_{n \times n}$ and $\Pi_{n \times n}$, with all pairs of shortest paths, and the matrix of precedents in the shortest paths, respectively.
- **safe**: sent by the synchronizer when it is safe to do new computations. This is an important message because all work of the A-Team is done as a response to safe.
- **acknowledge**: sent by the A-Team process to acknowledge the receiving and processing of the safe message.

In addition to these types of messages, there is a specific way for the A-Team to send information to other nodes. In order to do this, the task must send a message to the synchronizer with an special tag, specifying the destination. This tag is just a number between 1 and $|Q|$. The A-Team task does not need to know the exact identifier of the other nodes, thus simplifying message processing. All messages received from other nodes are also handled by the synchronizer. The A-Team just needs to recover the node tag from each message. Each message (sent or received) must also include the current execution step s_i.

6 Computational Results

In order to evaluate the proposed algorithm we executed two types of experiments. The first kind of experiment used a sequential implementation (number of nodes equal to one). The second type of experiment tested the speedup due to the parallel implementation.

6.1 Hardware and software configuration

The parallel A-Team was implemented using the PVM (Parallel Virtual Memory System) [13]. The programming language used was the C language, with the GNU GCC compiler. The machine used was an IBM SP2 parallel system, with processors running at 66.7MHz and 256MB of memory in each node.

In the tests we used random instances presented in [14] to evaluate and compare the performance of our method.

The total size of memory for solutions used in the A-Teams is equal to the
number of nodes n. During tests this value showed to give good results for graphs with the size that we are considering. The value of δ was set to 4 for each node q_i, according to some experimentation performed on the data.

6.2 Sequential tests

The first experiment executed tried to assess the computational performance of the A-Team approach, compared to other methods. We did two kinds of comparisons: against both an exact method and an approximate algorithm. The exact method chosen was a branch-and-cut, implemented by Meneses [15]. Due to the hardness of the problem, the branch-and-cut algorithm could find exact results only for graphs with at most 40 nodes, 500 edges and $p = 5$. For most instances the A-Team found the optimum value in a fraction of the time spent by the exact algorithm. In Tables 6.2 and 6.2 we have a summary of results for the first experiment. The last column in this table represents the distance between the average solution found by the A-Team and the optimum value, when these values are different.

The second experiment was executed for instances with sizes ranging from 100 to 200 nodes, 500 to 2000 edges and $p = 10$ to 20. For these graphs we tried to solve the problem using both the A-Team and a Down Hill greedy heuristic. The results of these experiments appear in Table 3. We can see that the improvements in solution value are between 29\% and 38\%. The greater running time of the A-Teams can be explained by the fact that it needs to initialize the memory, which increases with the size of the instance, something that is not required in the local search algorithm.

6.3 Parallel tests

The idea of the parallel tests is: given the same A-Team configuration as in the sequential tests, what speed up can we have with the increase of nodes in the parallel system? With this goal in mind we run the program for instances shown in Table 4.

The organization of the parallel processes was done as follows. Initially, a parent process in launched in the first node of the SP2 machine. The responsibility of this process is just to launch identical copies of the ateam program in each of the remaining nodes. The parameters passed to the child processes are the instance to be solved and the random seed used throughout the computation. Thereafter, each node starts executing the partial synchronizer, that controls the computation. The organization of processes in each node is described in Figure 3.
<table>
<thead>
<tr>
<th>Instance</th>
<th>Branch-and-Cut</th>
<th>ATeam</th>
</tr>
</thead>
<tbody>
<tr>
<td>n m p</td>
<td>Opt. sol. time</td>
<td>Best run</td>
</tr>
<tr>
<td>30 60 8</td>
<td>57 28s</td>
<td>57 10</td>
</tr>
<tr>
<td>30 60 7</td>
<td>41 14s</td>
<td>41 10</td>
</tr>
<tr>
<td>30 60 6</td>
<td>38 15s</td>
<td>38 10</td>
</tr>
<tr>
<td>30 60 5</td>
<td>39 24s</td>
<td>39 10</td>
</tr>
<tr>
<td>30 100 8</td>
<td>29 01m51s</td>
<td>29 1</td>
</tr>
<tr>
<td>30 100 7</td>
<td>25 09s</td>
<td>25 10</td>
</tr>
<tr>
<td>30 100 6</td>
<td>30 49s</td>
<td>30 10</td>
</tr>
<tr>
<td>30 100 5</td>
<td>21 01m14s</td>
<td>22 0</td>
</tr>
<tr>
<td>30 200 8</td>
<td>21 02m50s</td>
<td>21 10</td>
</tr>
<tr>
<td>30 200 7</td>
<td>19 52m55s</td>
<td>21 0</td>
</tr>
<tr>
<td>30 200 6</td>
<td>18 17s</td>
<td>18 10</td>
</tr>
<tr>
<td>30 200 5</td>
<td>22 42s</td>
<td>22 10</td>
</tr>
<tr>
<td>30 300 8</td>
<td>13 19m31s</td>
<td>13 8</td>
</tr>
<tr>
<td>30 300 7</td>
<td>13 02m59s</td>
<td>13 10</td>
</tr>
<tr>
<td>30 300 6</td>
<td>11 04m14s</td>
<td>11 10</td>
</tr>
<tr>
<td>30 300 5</td>
<td>11 01m36s</td>
<td>11 10</td>
</tr>
<tr>
<td>30 400 8</td>
<td>14 48s</td>
<td>14 10</td>
</tr>
<tr>
<td>30 400 7</td>
<td>14 59m43s</td>
<td>14 10</td>
</tr>
<tr>
<td>30 400 6</td>
<td>12 12m42s</td>
<td>12 10</td>
</tr>
<tr>
<td>30 400 5</td>
<td>10 01m19s</td>
<td>10 10</td>
</tr>
</tbody>
</table>

Table 1
Computational results comparing A-Team to a branch-and-cut algorithm for instances with 30 nodes.

The results obtained are summarized in Table 4. The last columns represent the average time required to find the same solutions of Table 3. The columns labeled S represent the speedup of the corresponding configuration. The speedup is defined as

\[S(n) = \frac{T(1)}{T(n)} \]
<table>
<thead>
<tr>
<th>Instance</th>
<th>Branch-and-Cut</th>
<th>ATeam</th>
</tr>
</thead>
<tbody>
<tr>
<td>n m p</td>
<td>Opt. CPU sol. time</td>
<td>Best run ratio sol. time</td>
</tr>
<tr>
<td>40 100 8</td>
<td>50 02m08s</td>
<td>50 4 50.70 14m18s 1.40</td>
</tr>
<tr>
<td>40 100 7</td>
<td>48 01m37s</td>
<td>49 0 49.00 10m08s 2.08</td>
</tr>
<tr>
<td>40 100 6</td>
<td>38 25s</td>
<td>38 10 38.00 01m05s</td>
</tr>
<tr>
<td>40 100 5</td>
<td>32 47s</td>
<td>32 10 32.00 11s</td>
</tr>
<tr>
<td>40 200 8</td>
<td>30 08m24s</td>
<td>30 1 31.10 14m24s 3.67</td>
</tr>
<tr>
<td>40 200 7</td>
<td>19 32s</td>
<td>19 10 19.00 1m26s</td>
</tr>
<tr>
<td>40 200 6</td>
<td>23 59s</td>
<td>23 4 23.60 08m22s 2.61</td>
</tr>
<tr>
<td>40 200 5</td>
<td>16 07s</td>
<td>16 10 16.00 58s</td>
</tr>
<tr>
<td>40 300 8</td>
<td>20 01m48s</td>
<td>20 2 21.00 10m31s 5.00</td>
</tr>
<tr>
<td>40 300 7</td>
<td>14 01m19s</td>
<td>14 10 14.00 07m01s</td>
</tr>
<tr>
<td>40 300 6</td>
<td>14 01m27s</td>
<td>14 10 14.00 56s</td>
</tr>
<tr>
<td>40 300 5</td>
<td>20 06m27s</td>
<td>20 10 20.00 01m15s</td>
</tr>
<tr>
<td>40 400 8</td>
<td>22 39m35s</td>
<td>22 5 22.70 09m30s 3.18</td>
</tr>
<tr>
<td>40 400 7</td>
<td>14 08m37s</td>
<td>14 10 14.00 48s</td>
</tr>
<tr>
<td>40 400 6</td>
<td>17 02m17s</td>
<td>17 10 17.00 01m36s</td>
</tr>
<tr>
<td>40 400 5</td>
<td>11 01m42s</td>
<td>11 10 11.00 38s</td>
</tr>
<tr>
<td>40 500 8</td>
<td>17 04m07s</td>
<td>17 10 17.00 07m29s</td>
</tr>
<tr>
<td>40 500 7</td>
<td>16 04m33s</td>
<td>16 10 16.00 01m14s</td>
</tr>
<tr>
<td>40 500 6</td>
<td>14 03m46s</td>
<td>14 10 14.00 01m04s</td>
</tr>
<tr>
<td>40 500 5</td>
<td>12 10m45s</td>
<td>12 10 12.00 01m16s</td>
</tr>
</tbody>
</table>

Table 2
Computational results comparing A-Team to a branch-and-cut algorithm for instances with 40 nodes.

where $T(1)$ is the time for the sequential program and $T(n)$ is the time for the parallel program with n nodes. We can see that with the increase of the number of nodes, the speed up of the system also increases. This is due to a greater number of possible solutions which can be simultaneously generated, but there are also reductions in the time for initialization and for finding the solutions to the shortest path problem.
<table>
<thead>
<tr>
<th>Instance</th>
<th>Local Search</th>
<th>A-Team</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>best aver.</td>
<td>aver. improv.</td>
</tr>
<tr>
<td>n</td>
<td>m</td>
<td>p</td>
</tr>
<tr>
<td>100</td>
<td>500</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>600</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>700</td>
<td>10</td>
</tr>
<tr>
<td>120</td>
<td>800</td>
<td>12</td>
</tr>
<tr>
<td>120</td>
<td>900</td>
<td>12</td>
</tr>
<tr>
<td>120</td>
<td>1000</td>
<td>12</td>
</tr>
<tr>
<td>140</td>
<td>1000</td>
<td>14</td>
</tr>
<tr>
<td>140</td>
<td>1100</td>
<td>14</td>
</tr>
<tr>
<td>140</td>
<td>1200</td>
<td>14</td>
</tr>
<tr>
<td>160</td>
<td>1300</td>
<td>16</td>
</tr>
<tr>
<td>160</td>
<td>1400</td>
<td>16</td>
</tr>
<tr>
<td>160</td>
<td>1500</td>
<td>16</td>
</tr>
<tr>
<td>180</td>
<td>1600</td>
<td>18</td>
</tr>
<tr>
<td>180</td>
<td>1700</td>
<td>18</td>
</tr>
<tr>
<td>180</td>
<td>1800</td>
<td>18</td>
</tr>
<tr>
<td>200</td>
<td>1800</td>
<td>20</td>
</tr>
<tr>
<td>200</td>
<td>1900</td>
<td>20</td>
</tr>
<tr>
<td>200</td>
<td>2000</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 3
Computational results comparing A-Team to a local search algorithm.

7 Concluding remarks

In this paper we discussed the Point-to-point Connection Problem, a NP-Hard problem with applications in the areas of telecommunications and VLSI. We presented a parallel, randomized optimization algorithm for the PPCP and discussed how it can be implemented using a partially synchronous model. Experimentation with the algorithm shows that it gives good results compared with an exact method (branch-and-cut) and another randomized technique (a down-hill algorithm). The experiments also suggest that the performance of the parallel algorithm improves as the number of nodes in the system increases.
<table>
<thead>
<tr>
<th>Instance</th>
<th>Average time per number of nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>n m p</td>
<td>1</td>
</tr>
<tr>
<td>100 500</td>
<td>10</td>
</tr>
<tr>
<td>100 600</td>
<td>10</td>
</tr>
<tr>
<td>100 700</td>
<td>10</td>
</tr>
<tr>
<td>120 800</td>
<td>12</td>
</tr>
<tr>
<td>120 900</td>
<td>12</td>
</tr>
<tr>
<td>120 1000</td>
<td>12</td>
</tr>
<tr>
<td>140 1000</td>
<td>14</td>
</tr>
<tr>
<td>140 1100</td>
<td>14</td>
</tr>
<tr>
<td>140 1200</td>
<td>14</td>
</tr>
<tr>
<td>160 1300</td>
<td>16</td>
</tr>
<tr>
<td>160 1400</td>
<td>16</td>
</tr>
<tr>
<td>160 1500</td>
<td>16</td>
</tr>
<tr>
<td>180 1600</td>
<td>18</td>
</tr>
<tr>
<td>180 1700</td>
<td>18</td>
</tr>
<tr>
<td>180 1800</td>
<td>18</td>
</tr>
<tr>
<td>200 1800</td>
<td>20</td>
</tr>
<tr>
<td>200 1900</td>
<td>20</td>
</tr>
<tr>
<td>200 2000</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 4

Computational results comparing the speed up of a parallel A-Team with 2, 4, 8 and 16 nodes.

The PPC problem is still not well studied and there are many opportunities for improving the solutions to this problem. The techniques presented in this paper are also not yet in widespread use, but can be successfully applied in many other combinatorial optimization problems.

8 Acknowledgments

Thanks to the CENAPAD-NE center (Centro Nacional de Processamento de Alto Desempenho do Nordeste, Brazil) for the parallel environment used in the implementation of the software, and Paulo Benicio (UFC) for helping with the PVM system.
References

